Chem. Ber. 113, 42-54 (1980)

Reaktivität von Metall-Metall-Bindungen

Mehrkernkomplexe durch Spaltung von Metall-Metall-Bindungen mit funktionellen Liganden

Hans-Joachim Langenbach, Erika Röttinger und Heinrich Vahrenkamp*

Chemisches Laboratorium der Universität Freiburg, Albertstr. 21, D-7800 Freiburg

Eingegangen am 15. März 1979

In arsenverbrückten Zweikernkomplexen 1-3 ließen sich Fe-Co-, Fe-Fe- und Fe-Mn-Bindungen durch Addition von Me₂E-NMe₂ (E = P, As) öffnen. Aus den entstandenen Me₂E-NMe₂ enthaltenden Zweikernkomplexen 4-6 konnten mit HCl in einigen Fällen die entsprechenden Me₂ECl-Komplexe 7 hergestellt werden. Während FeMn(CO)₈(μ -AsMe₂) (1) mit Me₂PCl normal unter Addition reagierte, bildete sich mit Me₂AsCl durch Addition und Umlagerung die Verbindung [(CO)₄Fe(μ -AsMe₂)₂Mn(CO)₄]⁺ [(CO)₄Fe-AsMe₂-Mn(CO)₄Cl]⁻ (8) mit Zweikern-Kationen und -Anionen, die kristallographisch charakterisiert wurde. Mit Me₂P - PMe₂ wurden die Metall-Metall-Bindungen unter Bildung von Komplexen mit M-As-M-P-P-Gerüst geöffnet (14-16). Diese reagierten als metallorganische Lewis-Basen erneut im gleichen Sinne, wodurch sich gezielt Vierkernkomplexe 17-22 mit M-As-M-P-P-M-As-M-Baueinheiten darstellen ließen.

Reactivity of Metal-Metal Bonds

Polynuclear Complexes via Cleavage of Metal-Metal Bonds by Functional Ligands

In arsenic-bridged dinuclear complexes 1-3 Fe-Co, Fe-Fe, and Fe-Mn bonds could be opened by addition of Me₂E-NMe₂ (E = P, As). From the resulting Me₂E-NMe₂ containing dinuclear complexes 4-6 with HCl in a few cases the corresponding Me₂ECl complexes 7 were prepared. While FeMn(CO)₈(μ -AsMe₂) (1) reacted with Me₂PCl normally under addition, with Me₂AsCl by addition and rearrangement the compound [(CO)₄Fe(μ -AsMe₂)₂Mn(CO)₄]⁺-[(CO)₄Fe-AsMe₂-Mn(CO)₄Cl]⁻ (8) with dinuclear cations and anions was formed which was characterized crystallographically. With Me₂P - PMe₂ the metal-metal bonds were opened with formation of complexes with a M - As - M - P - P framework (14 - 16). These reacted as organometallic Lewis bases once more in the same way whereby in a planned fashion tetranuclear complexes 17-22 with M - As - M - P - P - M - As - M backbones were prepared.

Funktionelle Liganden sind wertvolle Bausteine der Komplexchemie, denn sie erlauben es in vielen Fällen, die Konstruktionsprinzipien der Hauptgruppenelement-Verbindungen in die Organometall-Chemie zu übertragen. Insbesondere funktionelle Phosphane und Arsane haben sich in dieser Hinsicht bewährt, wie zahlreiche Umsetzungen mit komplexgebundenem R₂EH, R₂ECl, R₂ELi und R₂E – NR₂ (E = P, As) beweisen¹⁻⁴.

Wir sind bemüht, solche Liganden gezielt zur Mehrkernkomplex-Synthese einzusetzen $^{5-10}$. In diesem Zusammenhang ist auch an Aufbaureaktionen zu denken, die von Mehrkernkomplexen ausgehen. Dabei könnten einmal die funktionellen Liganden als

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980

Donoren durch Substitution angeheftet werden. Ihre Reaktivität verbietet aber z. T. die dazu nötigen drastischen Bedingungen. Deshalb bietet sich zu ihrer Einbringung die besonders milde verlaufende nucleophile Öffnung verbrückter Metall-Metall-Bindungen¹¹⁻¹³⁾ an. Über erste Versuche, auf diesem Wege zu einer funktionellen Mehrkernkomplex-Chemie zu kommen, wird in der vorliegenden Arbeit berichtet. Als Ausgangsverbindungen dienten dazu die Fe-Mn-, Fe-Fe- und Fe-Co-verknüpften $1-3^{7,12}$.

Reaktionen mit $Me_2E - NMe_2$ und Me_2ECl (E = P, As)

An der Umsetzung von 1 und 3 mit Aminophosphanen^{11,12)} hatten wir schon beobachtet, daß sich die Metall-Metall-Bindungen solcher Komplexe mit funktionellen Liganden öffnen lassen, und dabei die Verbindungen 4a, b, 5a und 6a erhalten. Jetzt gelang unschwer auf gleiche Weise die Darstellung der Aminoarsan-Komplexe 4c, d, 5b, 6b. Alle Komplexe 4-6 sind thermisch recht stabil und sehr hydrolyseempfindlich.

Da Chlorarsankomplexe für Aufbaureaktionen besser geeignet sind als Chlorphosphankomplexe^{7,14}, wurde bevorzugt bei den neuen Aminoarsan-Verbindungen ihre Umwandlung mit HCl in die entsprechenden Chlorarsanverbindungen angestrebt. Diese verlief jedoch für **4c**, **5b** und **6b** nicht in der von Einkernkomplexen her bekannten eindeutigen Weise^{7,15}. Stattdessen wurden unidentifizierbare Produktgemische erhalten. Lediglich **4d** lieferte das gewünschte Produkt **7c**. Auch das zu **4c** analoge Aminophosphan-Derivat **4a** reagierte mit HCl nicht zum gewünschten **7a**. Doch an seiner Stelle konnte als Ergebnis einer *cis-trans*-Isomerisierung **7b** isoliert werden, das sich auch aus **4b** mit HCl bildete. Ob funktionelle Zweikernkomplexe wie **7c** für Aufbaureaktionen brauchbar sind, scheint ungewiß, da orientierende Umsetzungen mit Carbonylmetallaten keine eindeutigen Ergebnisse zeigten.

Ausgehend vom Fe – Mn-verknüpften 1 wurde auch der direkte Weg zu den Komplexen 7 versucht. Dieser war mit PMe₂Cl als Nucleophil auch gangbar. Durch Öffnung der Fe – Mn-Bindung entstand zunächst das *cis*-konfigurierte 7a, das durch Erhitzen in das *trans*-konfigurierte 7b umgewandelt werden konnte. Aus 1 und Me₂AsCl bildete sich jedoch eine sehr schwerlösliche Verbindung, deren Eigenschaften und Spektren nicht mit einem Komplex 7 zu vereinbaren waren (NMR in $[D_6]$ Aceton: 2.18, 1.66 ppm, Int. 2:1; IR in KBr: 2121 s, 2076 m, 2067 m, 2045 st, 2005 sst, 1988 sst, 1977 sst, 1936 s, 1919 st, 1903 st, 1888 cm⁻¹ st). Diese konnte erst durch eine Kristallstrukturanalyse (s.u.) als die Ionenverbindung **8** identifiziert werden. Zu ihrer Entstehung muß angenommen werden, daß zunächst die Metall-Metall-Bindung geöffnet wird, wobei sich ein Komplex bildet, in dem am Mangan die Einheiten (CO)₄Fe-AsMe₂ und AsMe₂Cl *cis*-ständig sind. Aus dieser Zwischenstufe muß Cl⁻ eliminiert werden, wodurch sich der kationische FeAs₂Mn-Vierring bildet. Das Cl⁻ seinerseits muß in einem zweiten Molekül von **1** die Fe-Mn-Bindung zur Bildung des Fe-As-Mn-Cl-Anions öffnen. Auf unerwartete Weise ist damit ein weiterer funktioneller Ligand, das Chlorid-Ion, zur Öffnung einer Metall-Metall-Bindung verwendet worden.

Tab. 1. Spektren der neuen Komplexe 4-7 (NMR: Benzol, int. TMS, ppm; IR: Cyclohexan, cm⁻¹)

Kom- plex	NM μ-AsMe ₂	R-Signale funkt. Ligand	1.	v(CO) Zeile: Fe(CC) bzw. v(N()) ₄ , 2. Zeile	D) e: M'(CO) _n	
4c	1.58	1.98/1.07	2023 st	1958 st	1924 m	1914 m	1906 m
			2063 s	2002 st	1990 sst	1984 sst	1969 st
4d	1.78	1.99/0.94	2024 m	1956 m	1920 st	1914 m	
			2062 ss	2011 s	1977 sst	1972 st	
5 b	1.87	1.99/0.93	2034 m	1963 m	1931 sst, l	b	
			2005 s	1955 st	1757 s	1747 s	
6 b	1.84	1.99/0.90	2026 m	1963 st	1930 sst		
			2043 s	1986 st, b	1973 st		
7a	1.58	1.35 ^{a)}	2032 st	1962 m	1927 st	1916 Sch	
			2077 s	2017 m	1998 sst	1990 st	1974 s
7b	1.69	1.13 ^{b)}	2029 m	1958 m	1923 st	1916 m	
			2077 s	2029 m	1995 sst	1985 Sch	
7c	1.66	1.13	2027 m	196 0 m	1924 st	1917 m	
			2075 ss	2020 Sch	1993 sst	1985 Sch	

a) J = 6.1 Hz. - b) J = 6.3 Hz.

Die Spektren der funktionellen Zweikernkomplexe (Tab. 1) entsprechen den angegebenen Konstitutionen. Die Tieffeldverschiebung des μ -AsMe₂-Signals im Vergleich zu den Ausgangskomplexen 1–3 zeigt wie immer^{12,13)} die Öffnung der Metall-Metall-Bindung an. In den IR-Spektren sind die Baueinheiten (CO)₄Fe und M'(CO)_n [Mn(CO)₄, Fe(CO)₂NO, Co(CO)₃] gut auszumachen, und die *cis*- bzw. *trans*-Anordnung der Liganden an der Mn(CO)₄-Gruppe^{12,13,16)} zeigt sich an den v(CO)-Banden der Mn(CO)₄-Einheit und der relativen Lage der AsMe₂- bzw. PMe₂-NMR-Signale.

Kristallstrukturanalyse von 8

Die Strukturbestimmung von 8 wurde zunächst in Angriff genommen, weil dessen Schwerlöslichkeit einen mehrkernigen Komplex erwarten ließ. Die aufgefundene ungewöhnliche Ionenverbindung rechtfertigte jedoch auch die Bemühungen. Da die erhaltenen Kristalle nur von mittlerer Qualität waren, sind die Standardabweichungen in den Atomparametern, Atomabständen und Bindungswinkeln relativ hoch (Tab. 2, 3).

tom	x		γ	z		8	Atom		x	Υ		Z	B
<u>n A</u> n	ion						Im Ka	tion					
\s1	-0.0804(7)	0.7954(5)	0.1425	(4)	a)	As2	0.46	592 (8)	0.2578(6) 0.39	14(5)	a)
in 1	0.1274(11)	0.8956(7)	0.0961	(6)	a)	As3	0.62	238(9)	0,3322(6) 0.23	40(5)	a)
e 1	-0.0898(9)	0.7593(7)	0.2980	(5)	a)	Hn2	0.7	131 (13)	0.2151(8) 0.35	43(7)	a)
.1	0.0077(20)	0.8735(14)	-0.0567	(11)	a)	Fe2	0.33	767(12)	0.3750(8) .0.27	18(7)	a)
:1	0.223(8	0	0.907(6)	0.211(5) 3	.4(1.3)	63	0.86	39(9)	0.201(6)	0.31	2(6)	3.0(1.2)
22	-0.001(7	0	0.998(5)	0.103(4) 1	9(1.0)	C10	0.6	26(8)	0.117(6)	0.28	5(5)	6.4(1.9)
:3	0.279(9	0	0.963(6)	0.054(5) 3	.5(1.2).	°C11	0.74	8(8)	0.126(5)	o.44	7(5)	6.6(1.9)
24	0.236(8	()	0.778(6)	0.087(4) 5	.3(1.5)	C12	0.78	34 (9)	0.320(5)	0,42	6(4)	11.7(3.3)
5	-0.088(8	0	0.736(5)	0.413(4) 3	.2(1.2)	C13	0.20	07(7)	0.397(6)	0.31	8(5)	5.4(1.6)
6	0.074(8	0	0.688(6)	0.291(5) 5	.7(1.7)	C14	0.4	74(8)	0.470(5)	0.34	5(6)	10.5(3.1)
:7	-0.064(9	H)	0.887(6)	0.321(4) 6	.0(1.7)	C15	0.3	57 (8)	0.454(6)	0.17	3(5)	4.0(1.4)
8	-0.273(7)	0.712(5)	D.263(5) 3	.6(1.3)	C16	0.3	03 (8)	0.264(6)	0.20	7 (5)	4.8(1.4)
17	-0.268(7	1}	0.858(5)	0.091(4) 5	.0(1.5)	019	0.4	58(6)	0.314(5)	0.50	7(4)	4.7(1.5)
18	-0.093(7)	0.665(4)	0.064(4) 4	.1(1.4)	C 2 0	0.3	35(6)	0.141(4)	0.39	8(3)	3.4(1.3)
01	0.284(5	.)	0.914(3)	0.286(3) 6	.1(1.1)	C21	0.7	53 (6)	0.451(4)	0.22	0(3)	3.4(1.3)
02	-0.081(5	5)	1.067(4)	0.109(3) 7	.1(1.3)	C22	0.6	01(7)	0.279(5)	0.10	4(4)	5.1(1.5)
3	0.376(5	6)	1.007(3)	0.031(3) 5	.9(1.1)	09	0.9	39(5)	0.191(3)	0.28	7(3)	5.8(1.1)
04	0.301(5	5)	0.703(4)	0.084(3) 7	.1(1.3)	010	0.5	72(6)	0.056(4)	0.24	2(3)	7.6(1.4)
05	-0.088(é	5)	0.723(4)	6.484 (3) 7	.8(1.4)	011	0.7	70(5)	0.070(4)	0.50	5(3)	6.8(1.2)
06	0.187(5	5)	0.639(3)	0.239(3) 6	.6(1.2)	012	0.8	28(6)	0.385(4)	0.47	2(3)	7.7(1.3)
07	-0.046(6	5)	0.971(4)	0.337(3) 8	.1(1.4)	013	0.0	99(6)	0.410(4)	0.34	6(3)	8.3(1.5)
06	-0.398(9	5)	0.681(4)	0.239(3) 7	.3(1.3)	014	0.5	39(6)	0.533(4)	0.39	3(3)	8.2(1.5)
							015	0.3	43(6)	0.506(4)	0.11	1(3)	8.5(1.5)
							016	0.2	55(5)	0.191(3)	0.16	5(3)	6.4(1.2)
a) an	isotrope Tem	operat	urfaktoren		·····								
Atom	B ₁₁ E	322	Baa	B12	813	823	Atom	B11	B22	833	812	813	B20
	L 1(3) 1	7(2)	2 9(3)	-0.3(2)	0.1(2)	03(2)	∆c7	4 6 (4)	3 8 (3)	5 0(3)	n 4(3)	1.1(3)	-0.5(3)
He 1	4 1 (5) 1	2(4)	3.5(4)	=0.3(4)	0.5(4)	0.2(3)	A 52	5 3 (4)	3 7 (4)	1 7(4)	-0.7(3)	1 0(3)	-0.3(3)
Fal	3.5(4) 2	3(4)	3 n(4)	=0.1(4)	0.9(3)	0.4(3)	Hn2	6 2(6)	5.7(4) 4.0(5)	4 2(5)	2 1 (5)	-0.1(5)	0.0(4)
	6 2 (0) 5	0(0)	2 2 (%)	-1 2(8)	0.2(7)	0.7(2)	Fo2	h E (E)	7 8/5)	6 0(6)	a L(L)	0.1(5)	-0.1(4)
	0.2(3) 5	(9)	2.2(0)	-1.3(0)	0.217)	0.2(7)	rez	7-2(5)	2.0(5)	0.0(0)	0.4(4)	0.1(5)	0.1(4)

Tab. 2. Atomparameter von 8

C 92/79. Tab.2

Während die geringe Genauigkeit der Strukturbestimmung von **8** eine detaillierte Bindungsdiskussion verbietet, bringen doch einige Vergleiche Licht in die Bildungstendenz und Stabilität der Verbindung. So ist das Kation (Abb. 1a), in dem Fe und Mn ununterscheidbar sind und willkürlich zugeordnet wurden, isoelektronisch und strukturverwandt mit den Neutralkomplexen 9¹⁷⁾, 10¹⁸⁾ und 11¹⁹⁾. In all diesen Verbindungen liegt ein planarer M₂X₂-Rhombus vor, wobei der M-M-Abstand von 374-412 pm, der X-X-Abstand von 310-339 pm, der M-X-M-Winkel von 96-103° und der X-M-X-Winkel von 77-84° variiert. Die äquatorialen CO-Gruppen der M(CO)₄-Gruppen dieser Moleküle liegen jeweils in der M₂X₂-Ebene und die axialen CO-Gruppen sind leicht zur Molekülmitte geneigt. Der Bildungstendenz des Kations

Bindung	Länge (pm)	Winkel	Grad	Winkel	Grad
Im Anion		lm Anion		Im Kation	
	248(1)		121.2(4)		100 4-101 3(5)
ASI-MNI	246(1)	Mni-Asi-Fei	121.2(4)	H-AS-H	111 -119 (2)
As1-Fel	240(1)	Mn1-AsI-C	106-108 (2)	M-AS-L	(1) -119 (2)
Mn1-C R	241(2)	Fel-Asl-C	108-112 (2)	C-As-C	98 - 99 (2)
Mn≁C	178-187(3)	C17-As1-C18	100 (2)	As-M-As	78.8- 79.5(4)
Fe-C	176-177(3)	Asl-Mn1-C2	87.5(6)	As-M-C(ax.)	85.0- 89.3(4)
(Mn) C-0	115-119(5)	As1-Mn1-C(cis)	83.5-93.3(5)	As-M-C(äq.)	85.4- 91.9(5)
(Fe)C-0	108-122(5)	Asi-Mn1-C3	174.6(5)	As-M-C(trans)	164.2-170.6(6)
		C2-Mn1-C(cis)	87.2-88.5(6)	C-M-C(cis)	88.2-103.9(5)
		C 1- Mn1-C1	176.8(7)	C-M-C(trans)	170.1-174.4(7)
The Kat ron		Mn1-C-0	177-179 (2)	M-C-0	178 -180 (3)
As-M	241-244(2)	As1-Fe1-C(äq.)	83.9-88.6(3)		
As-C	193-205(6)	As1-Fe1-C5	177.0(5)		
M-C	177-184(3)	C5-Fe1-C(äq.)	89.4-95.1(4)		
C-0	112-120(6)	C(äq.)-Fel-C(äq.)	117.0-122.5(5)		
		Fel-C-O	178-180 (2)		

Tab. 3. Wichtigste Atomabstände und Bindungswinkel in 8

C 92/79. Tab. 3

Abb. 1a Kation, 1b Anion der Verbindung 8

entspricht also eine günstige Struktur. Die Ladung des Kations macht sich in seiner Struktur kaum bemerkbar. Insbesondere liegen die Fe-As- und Mn-As-Bindungslängen im Bereich der für ähnliche ringförmige Systeme gefundenen Werte²⁰⁻²⁶⁾ und schwanken so wenig, daß sich auch keine Indizien für eine Lokalisation der Ladung ergeben.

Das Anion läßt sich mit einigen einfach arsenverbrückten Zweikernkomplexen vergleichen. Auch dabei zeigt sich, daß zwischen dem geladenen **8** und den ungeladenen Komplexen kaum ein Unterschied besteht. Insbesondere mit dem isoelektronischen Komplex *cis*-**12**¹⁶⁾ ist das Anion von **8** fast deckungsgleich. Doch auch **13**²⁷⁾ zeigt praktisch denselben Winkel am Arsenatom, einen vergleichbaren Metall-Arsen-Abstand und eine ähnliche Verzahnung der Carbonylliganden. Auch der Mn – Cl-Abstand liegt im Rahmen der von einkernigen Komplexen her bekannten Werte^{20, 28, 29)}. Die oktaedrische Koordination des Mangans und die trigonal-bipyramidale Koordination des Eisens sind recht gut verwirklicht. Je nach Verteilung der Valenzelektronen läßt sich die negative Ladung auf dem Eisen-, dem Mangan- oder dem Chloratom plazieren. Die Molekülstruktur liefert jedoch keine Indizien zur Bevorzugung einer dieser Alternativen.

Auf diese Weise wird die Entstehung der ungewöhnlichen Verbindung 8 dadurch verständlich, daß ihre kationischen und anionischen Bausteine "normale" Komplexe sind.

Reaktionen mit Me₂P – PMe₂

Tetramethyldiphosphan ist gut für Aufbaureaktionen geeignet, da es sich nacheinander an zwei verschiedene Metallcarbonyl-Einheiten koordinieren läßt^{9,10}). Es lag deshalb nahe, diese Fähigkeit auch über die Öffnung von Metall-Metall-Bindungen zu realisieren. Dazu wurden 1-3 in stöchiometrischem Verhältnis mit Me₂P – PMe₂ umgesetzt, wobei in guter Ausbeute die Komplexe 14-16 resultierten. Entsprechend seinen guten Donoreigenschaften öffnete das Diphosphan sehr leicht die Metall-Metall-Bindungen; der Fe-Mn-Komplex 16 fiel dabei in der *trans*-Konfiguration an (vgl. Tab. 4). 14-16 sind thermisch und gegen Oxidation recht empfindlich. Neben ihren Analysen und Spektren dienten ihre weiteren Umsetzungen (s.u.) zu ihrer Identifizierung³⁰.

Dadurch, daß sie noch eine unkoordinierte PMe_2 -Gruppe enthalten, sind 14-16 metallorganische Lewis-Basen. Diese Eigenschaft nutzten wir in der erneuten Umsetzung mit 1-3 aus. Die dabei stattfindende Öffnung der Metall-Metall-Bindungen lieferte erstmals in gezielter Reaktion basenverbrückte Vierkernkomplexe mit kettenförmigem Molekülgerüst. Alle Kombinationen waren realisierbar, und es wurden die Vierkernkomplexe 17-22 erhalten. Jeder davon war auf zwei Wegen zugänglich, je nach-

	Tab. 4.	IR-Spektren de	er Tetramethyld	iphosphan-Ko	mplexe 14 – 22 (14 – 1	6 in Cyclohexa	.n, 17–22 in KB	tr, cm ⁻¹)	
		(CO) ₄ F	e-Gruppen		M, M′		M bzw. M	('-Gruppen	
14	2029 s	1965 st	1932 sst		Co(CO)	2046 ss	1981 m	1973 m	
15	2037 st	1964 st	1932 sst, b		Fe(CO),NO	2003 s	1956 sst	1748 s, b	
16	2026 m	1956 m	1922 st	1915 m	Mn(CO)4	2060 ss	2012 s	1980 sst	1975 Sch
17	2031 m	1948 st	1930 st	1909 sst	Co(CO)3	2051 ss	1989 st	1970 sst, b	
18	2027 m	1947 sst	1934 Sch	1916 st	Co(CO)	2048 Sch	1991 m	1972 st, b	
	2036 m	1959 sst	1927 sst	1907 st	Fe(CO) ₂ NO	2016 s	1947 sst	1762 s	1738 s
19	2027 m	1953 st, b	1929 т, b	1909 m	Co(CO)3	2048 ss	1979 sst	1953 st, b	
	2027 m	1953 st, b	1926 m, b	1900 Sch	Mn(CO)4	2066 ss	1991 Sch	1979 sst	
20	2038 m	1958 st, b	1926 st	1907 st, b	Fe(CO) ₂ NO	2017 s	1946 sst	1761 s	1737 s
21	2035 m	1951 sst, b	1927 st	1911 st	Fe(CO),NO	2015 m	1951 sst, b	1757 m	174 4 m
	2022 Sch	1951 sst, b	1927 st	1897 st	Mn(CO)	2067 ss	1984 sst, b	1969 m	
22	2025 m	1950 sst	1922 st	1901 st, b	Mn(CO)4	2063 ss	1991 st, b	1977 sst	
Tab. 5. NN	AR-Daten der Tei p	ramethyldipho lett, DD Dopp	sphan-Kompley eldublett, b bre	te 14 – 22 (14 – ites Signal, M	-16 in Benzol, 17 – 22 Multiplett mit unzurei	in [D ₈]THF, in ichend aufgelö	t. TMS, δ in ppn ster Feinstruktur	n, Jin Hz, D D r)	Jublett, T Tri-
	Komplex	AsMo	e2-Signale δ/J		PMe	2-Signale δ/J			
	14	1.85	D/2.0		0.82 DD/9.2. 6.2	0.6	9 DD/16.0. 4.8		
	15	1.87	D/0.9		0.85 DD/9.3, 6.5	0.6	8 DD/16.2, 4.7		
	16	1.761	p		0.74 DD/11.5, 4.5	0.5	9 DD/15.0, 5.0		
	17	1.971	p		1.98 T/1.0				
	18	2.05 1	M 1.98 b		2.05 M	2.0	12 b		
	19	1.97 1	b 1.83 b		1.99 b	1.9	7 b		
	20	2.07]	D/0.5		2.03 T/0.4				
	21	2.03	D/1.2 1.83		2.02 M	1.9	36 T/1.5		
	22	1.84 1	<u>م</u>		1.98 T/0.8				

Jahrg. 113

dem von welcher der Basen 14–16 man ausging oder ob man 1–3 mit den ihnen entsprechenden Basen 14–16 im Molverhältnis 1:1 oder mit $Me_2P - PMe_2$ im Molverhältnis 2:1 umsetzte. 17–22 waren sehr leicht zu erhalten, da sie aus den Reaktionsmischungen analysenrein ausfielen und im festen Zustand luftstabil sind. Von 17 als repräsentativem Vertreter (Molmasse 954) bestätigte ein FD-Massenspektrum die Zusammensetzung.

Die Tetramethyldiphosphan-Komplexe 14-22 waren an Hand ihrer IR-Spektren (Tab. 4) zu identifizieren. Die durch zahlreiche vorhandene Analogbeispiele erleichterte Zuordnung der Gruppen (CO)₄Fe und M bei 14-16 ließ sich für die bandenreichen Spektren von 17-22 übernehmen, so daß auch hier die einzelnen Metallcarbonyl-Einheiten aussortiert werden konnten. Dabei zeigte sich auch, daß in 19, 21 und 22 an den Manganatomen wie in 16 die As- und P-Liganden *trans*-ständig sind.

Die NMR-Spektren von 17-22 (Tab. 5) waren nur beschränkt für Konstitutionszuordnungen zu verwenden. Zum einen traten Linienverbreiterungen und -verluste durch die Quadrupolkerne Mn und Co ein³¹⁾, zum anderen konnten die schwerlöslichen Vierkernkomplexe nur in THF vermessen werden, in dem alle Resonanzen sehr nahe beieinander liegen und relativ schlecht aufgelöst sind. Eindeutig sind jedoch die für die Komplexe ohne Metall-Metall-Bindung typische tiefe Lage des AsMe₂-Signals^{12,13)}, der deutliche Signalabstand für die freie und koordinierte PMe₂-Gruppe des Tetramethyldiphosphans in 14-16 und die einfachen Spektren der symmetrischen Vierkernkomplexe 17, 20 und 22.

Die hier beschriebenen Reaktionen bestätigen das synthetische Potential, das der nucleophilen Öffnung von Metall-Metall-Bindungen zukommt. Es zeigt sich jedoch auch, daß die Chemie der funktionellen Mehrkernkomplexe nicht ohne weiteres aus der entsprechender einfacher Verbindungen abgeleitet werden kann. Die metallorganischen Lewis-Basen 14-16 versprechen einen neuen Einstieg in die Mehrkernkomplex-Chemie. Die Schwerlöslichkeit von 17-22 deutet aber auch an, daß dem Aufbau größerer oligomerer Gebilde eventuell präparative Grenzen gesetzt sind.

Diese Arbeit wurde von der Deutschen Forschungsgemeinschaft und vom Fonds der Chemischen Industrie unterstützt. Herrn Dr. K. Steinbach, Universität Marburg, danken wir herzlich für Massenspektren.

- 22
7
pun
÷
+
Komplexe
neuen
der
Darstellung
6.
Tab.

Kom- plex	Aı	ısgangsverbin g	ndung mmol	Reagens ^{a)}	nmol	Lösungsmi	ttel ^{b)} ml	Reakt Temp.	ions- Zeit (h)	Variante	Ausbe g	ute %
4c	1	0.39	0.89	Me ₂ AsNMe ₂	1.0	B/H 1:2	10	15	З	V	0.32	61
4d	4c	0.30	0.51			Benzol	5	90	4	В	0.21	70
5b	7	0.23	0.55	Me ₂ AsNMe ₂	1.0	B/H 1:9	12	10	S	В	0.23	74
6b	e	0.28	0.67	Me ₂ AsNMe ₂	1.0	B/H 1:9	15	15	7	В	0.26	68
7 a	1	0.30	0.68	Me ₂ PCI	1.2	B/H 1:3	4	0	1	В	0.31	85
7 b	7a	0.16	0.30			Benzol	4	60	3	В	0.11	69
7b	4a	0.25	0.46	HCI	3.0	Ether	20	0	1	U	0.19	F
7 b	4 b	0.17	0.31	HCI	2.0	Ether	15	0	-	U	0.12	72
7c	4 d	0.30	0.51	HCI	3.0	Ether	20	0	1	U	0.25	85
80	1	0.35	0.81	Me ₂ AsCI	1.0	Benzol	7	10	1	A	0.38	92
14	3	0.21	0.51	Me ₂ PPMe ₂	1.0	B/H 1:2	9	0	5	U	0.22	80
15	7	0.25	0.60	Me ₂ PPMe ₂	2.5	Benzol	5	25	7	c	0.19	59
16	1	0.24	0.54	Me ₂ PPMe ₂	2.5	Benzol	5	25	1	c	0.28	91
17	14	0.12	0.22	Э	0.3	Benzol	5	25	1	Υ	0.18	85
17	3	0.30	0.72	Me ₂ PPMe ₂	0.4	Benzol	9	25	1	A	0.33	76
18	14	0.10	0.19	2	0.4	Benzol	5	25	8	A	0.15	84
18	15	0.22	0.41	3	0.6	Benzol	5	25	12	V	0.43	95
19	14	0.23	0.43	1	0.5	Benzol	10	25	72	A	0.37	88
19	16	0.08	0.14	3	0.3	Benzol	3	25	40	A	0.10	72
20	15	0.28	0.52	2	0.6	Benzol	œ	25	12	A	0.42	85
20	7	0.13	0.31	Me ₂ PPMe ₂	0.3	Benzol	4	25	12	A	0.12	84
21	15	0.21	0.39	1	0.4	Benzol	10	25	48	A	0.34	89
21	16	0.10	0.18	2	0.2	Benzol	5	25	36	A	0.14	81
22	16	0.19	0.34	1	0.4	Benzol	5	25	24	A	0.28	83
22	1	0.30	0.68	Me2PPMe2	0.3	Benzol	\$	25	14	Α	0.30	88
a) Stets	als 1.0 M L	ösung im ang	gegebenen Lö	<u> 5sungsmittel. – ^{b)} B</u> ,	/H = Benze	ol/Hexan-Gemise	ch im ange	gebenen Me	engenverhä	ltnis.		1

Jahrg. 113

	Tab. 7. Charak	terisierung der ne	nen Komplexe	4-8 und 14-22				
Name		Farbe	Schmp. (°C)	Summenformel (Molmasse)		်ပ	Analyse H	Fe
Tetracarbonyl[(dimethylamino)dimethyl- arsan]-µ-(dimethylarsenido)- (tetracarbonyleisen)mangan	4c (<i>cis</i>)	orangerot	97 – 98	C ₁₄ H ₁₈ As ₂ FeMnNO ₈ (588.9)	Ber. Gef.	28.55 28.38	3.20 3.20	9.48 9.14
	4 d (trans)	orangerot	85 87	C ₁₄ H ₁₈ As ₂ FeMnNO ₈ (588.9)	Ber. Gef.	28.55 28.38	3.08 3.25	9.48 9.73
Dicarbonyl[(dimethylamino)dimethyl- arsan]-µ-(dimethylarsenido)nitrosyl- (tetracarbonyleisen)eisen	5b	orangerot	78 - 79	C ₁₂ H ₁₈ As ₂ Fe ₂ N ₂ O ₇ (563.8)	Ber. Gef.	25.56 25.59	3.22 3.02	19.81 20.19
Tetracarbonyl-µ-(dimethylarsenido)- {triearbonyl[(dimethylamino)dimethyl- arsan]cobalt?eisen	6b	dunkelrot	66 – 68 (Zers.)	C ₁₃ H ₁₈ As ₂ CoFeNO ₇ (564.9)	Ber. Gef.	27.64 27.44	3.21 3.14	9.89 9.95
Tetracarbonyl(chlordimethylphosphan)- µ-(dimethylarsenido)(tetracarbonyl- eisen)mangan	7a (cis)	goldgelb	89 – 92 (Zers.)	C ₁₂ H ₁₂ AsCIFeMnO ₈ P (536.4)	Ber. Gef.	26.87 26.83	2.24 2.09	10.41 10.34
	7 b (trans)	orangerot	91 – 93 (Zers.)	C ₁₂ H ₁₂ AsClFeMnO ₈ P (536.4)	Ber. Gef.	26.87 26.86	2.24 2.21	10.41 10.82
Tetracarbonyl(chlordimethylarsan)- µ-(dimethylarsenido)(tetracarbonyl- eisen)mangan	76	orangerot	63 – 65 (Zers.)	C ₁₂ H ₁₂ As ₂ ClFeMnO ₈ (580.4)	Ber. Gef.	24.81 25.00	2.08 2.03	9.62 9.36
[Tetracar bonylbis[µ-(dimethylarsenido)]- (tetracar bonyleisen)mangan}-tetracar- bonylchloro-µ-(dimethylarsenido)- (tetracar bonyleisen)manganat	œ	gelborange	229 (Zers.)	C ₂₂ H ₁₈ As ₃ CIFe ₂ Mn ₂ O ₁₆ (1020.2)	Ber. Gef.	25.90 25.96	1.78 1.75	10.95 10.60
Terracarbonyl-µ-(dimethylarsenido)- [triearbonyl(tetramethyldiphosphan)- cobalt]eisen	14	rot	53 - 56	C ₁₃ H ₁₈ AsCoFeO ₇ P ₂ (537.9)	Ber. Gef.	29.03 29.17	3.37 3.47	10.38 10.69
Dicarbonyl-µ-(dimethylarsenido)nitrosyl- (tetracarbonyleisen)(tetramethyl- diphosphan)eisen	15	rot	60 – 63	C ₁₂ H ₁₈ AsFe ₂ NO ₇ P ₂ (536.8)	Ber. Gef.	26.85 26.82	3.38 3.51	20.81 21.05

Reaktivität von Metall-Metall-Bindungen

		Tab. 7 (F	ortsetzung)					
Name		Farbe	Schmp. (°C)	Summenformel (Molmasse)		° c	Analyse H	Fe
Tetracarbonyl-μ-(dimethylarsenido)- (tetracarbonyleisen)(tetramethyl- diphosphan)mangan	16	goldgelb	101 – 104 (Zers.)	C ₁₄ H ₁₈ AsFeMnO ₈ P ₂ (561.9)	Ber. Gef.	29.92 30.09	3.23 3.27	9.94 10.26
µ-(Tetramethyldiphosphan)-bis[tetracar- bony]-µ-(dimethylarsenido)-(tricar- bonylcobalt)eisen-Co]	17	rotbraun	153 - 155	C ₂₂ H ₃₄ As ₂ Co ₂ Fe ₂ O ₁₄ P ₂ (953.8) ^{a)}	Ber. Gef.	27.70 28.00	2.54 2.54	11.71 12.08
μ-[Dicarbonylnitrosyl-μ-(tetramethyl- diphosphan)-(tricarbonylcobalt)eisen- Co, Fe]-bis[tetracarbonyl-μ-(dimethyl- arsenido)eisen]	18	rotbraun	156 - 158	C ₂₁ H ₂₄ As ₂ CoFe ₃ NO ₁₄ P ₂ (952.7)	Ber. Gef.	26.48 26.98	2.54 2.55	17.59 17.88
μ-[Tetracarbony]-μ-(tetramethyldiphos- phan)-(tricarbonylcobalt)mangan- <i>Co</i> , <i>Mn</i>]-bis[tetracarbony]-μ(dimethyl- arsenido)eisen]	19	braun	150–153 (Zers.)	C ₂₃ H ₂₄ As ₂ CoFe ₂ MnO ₁₅ P ₂ (977.8)	Ber. Gef.	28.25 28.46	2.47 2.53	11.42 11.89
µ-(Tetramethyldiphosphan)-bis[dicar- bonyl-µ-(dimethylarsenido)-nitrosyl- (tetracarbonyleisen)eisen]	20	rotbraun	157 (Zers.)	C ₂₀ H ₂₄ As ₂ Fe ₄ N ₂ O ₁₄ P ₂ (951.6)	Ber. Gef.	25.24 25.67	2.54 2.57	23.48 23.00
μ -[Tetracarbonyl(dicarbonylnitrosyleisen)- μ -(tetramethyldiphosphan)-mangan- Fe , Mn]-bis[tetracarbonyl- μ -(dimethyl- arsenido)eisen]	21	rotbraun	148 – 151 (Zers.)	C ₂₂ H ₂₄ As ₂ Fe ₃ MnNO ₁₅ P ₂ (976.7)	Ber. Gef.	27.05 27.09	2.48 2.38	17.15 17.23
µ-(Tetramethyldiphosphan)-bis[tetracar- bonyl-µ-(dimethylarsenido)-(tetracar- bonyleisen)mangan-Mn]	52	gelb	180 - 182 (Zers.)	C ₂₄ H ₂₄ As ₂ Fe ₂ Mn ₂ O ₁₆ P ₂ (1001.8)	Ber. Gef.	28.77 28.82	2.41 2.51	11.15 11.04
^{a)} Gef. 954 (FD-MS).								

H.-J. Langenbach, E. Röttinger und H. Vahrenkamp

Experimenteller Teil

Alle Reaktionen wurden unter Luftausschluß in frisch destillierten Lösungsmitteln durchgeführt. Die benötigten Ausgangsverbindungen wurden nach Literaturvorschriften dargestellt.

Die quantitativen Daten zur Synthese von 4-8 und 14-22 sind in Tab. 6 zusammengefaßt, die nähere Charakterisierung der einzelnen Komplexe enthält Tab. 7. Zur Darstellung der Verbindungen wurde stets die Ausgangsverbindung in der angegebenen Menge des genannten Lösungsmittels vorgelegt und die als Reagens bezeichnete Komponente als 1.0 M Lösung im gleichen Lösungsmittel hinzugegeben. Nach Ablauf der Reaktionszeit erfolgte die Aufarbeitung nach verschiedenen, in Tab. 6 durch Großbuchstaben gekennzeichneten Varianten:

A: Das im Reaktionsverlauf größtenteils auskristallisierte Produkt wurde abfiltriert, mehrmals mit wenig Benzol (4c mit Hexan) gewaschen und i. Vak. getrocknet. Die Mutterlauge wurde verworfen.

B: Die Reaktionslösung wurde auf 10-20% ihres Volumens eingeengt, mit 5 Volumenäquivalenten Hexan versetzt und der Kristallisation überlassen. Nach Filtrieren wurde das kristalline Produkt mit wenig kaltem Hexan gewaschen.

C: Die Lösung wurde i. Vak. zur Trockne eingeengt, der Rückstand zweimal mit 5 ml Benzol extrahiert und die vereinigten Extrakte auf 2 ml eingeengt. Nach Zugabe von 5 ml Hexan kristallisierte das Produkt bei -20° C, es wurde abfiltriert und mit wenig kaltem Hexan gewaschen.

Zur Kristallstrukturbestimmung von 8 geeignete Kristalle wurden aus Nitromethan erhalten: Kristallgröße 0.15 × 0.15 × 0.20 mm, monoklin, Raumgruppe $P2_1$, Z = 2; a = 896.4(5), b = 1343.9(2), c = 1501.5(4) pm, $\beta = 99.40(4)^{\circ}$; $d_{ber.} = 1.90$, $d_{gef.} = 1.91$ g/cm³; $\mu = 45.98$ cm⁻¹. Die geringe Qualität der erhaltenen Kristalle erlaubte nur die Vermessung von 1124 Reflexen mit $l > 3\sigma(I)$, sie verursachte relativ hohe Standardabweichungen und den ungünstigen R-Wert von 0.105. Die Struktur wurde mit Direktmethoden gelöst und nach dem Blockmatrix-Kleinste-Quadrate-Verfahren verfeinert. Die Extrema in der abschließenden Differenz-Fourier-Synthese waren + 3 und - 1 $e/10^6$ pm³.

Literatur

- ¹⁾ C. S. Kraihanzel, J. Organomet. Chem. 73, 137 (1974).
- ²⁾ G. Johannsen, O. Stelzer und E. Unger, Chem. Ber. 108, 1259 (1975).
- ³⁾ M. Höfler und M. Schnitzler, Chem. Ber. 107, 194 (1974).
- 4) P. M. Treichel, W. K. Dean und W. M. Douglas, J. Organomet. Chem. 42, 145 (1972).
- ⁵⁾ F. Richter, H. Beurich und H. Vahrenkamp, J. Organomet. Chem. 166, C 5 (1979).
- ⁶⁾ E. Keller und H. Vahrenkamp, J. Organomet. Chem. 155, C 41 (1978).
- ⁷⁾ W. Ehrl und H. Vahrenkamp, Chem. Ber. 106, 2556, 2563 (1973).
- 8) W. Ehrl und H. Vahrenkamp, J. Organomet. Chem. 63, 389 (1973).
- 9) L. Staudacher und H. Vahrenkamp, Chem. Ber. 109, 218 (1976).
- ¹⁰⁾ M. Brockhaus, F. Staudacher und H. Vahrenkamp, Chem. Ber. 105, 3716 (1972).
- ¹¹⁾ A. Mayr, W. Ehrl und H. Vahrenkamp, Chem. Ber. 107, 3860 (1974).
- ¹²⁾ H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 110, 1195, 1206 (1977).
- 13) H. J. Langenbach und H. Vahrenkamp, Chem. Ber. 112, 3390, 3773 (1979).
- ¹⁴⁾ W. Ehrl und H. Vahrenkamp, Chem. Ber. 104, 3261 (1971).
- ¹⁵⁾ E. Schädel und H. Vahrenkamp, Chem. Ber. 107, 3850 (1974).
- ¹⁶⁾ E. Keller und H. Vahrenkamp, Chem. Ber. 111, 65 (1978).
- 17) C. J. Marsden und G. M. Sheldrick, J. Organomet. Chem. 40, 175 (1972).
- ¹⁸⁾ L. F. Dahl und C. H. Wei, Acta Crystallogr. 16, 611 (1963).
- 19) C. J. Gilmore und P. Woodward, J. Chem. Soc., Dalton Trans. 1972, 1387.
- ²⁰⁾ C. A. Bear und J. Trotter, J. Chem. Soc., Dalton Trans. 1973, 673.

- ²¹⁾ F. W. B. Einstein, A. M. Pilotti und R. Restivo, Inorg. Chem. 10, 1947 (1971).
- ²²⁾ F. W. B. Einstein und R. D. G. Jones, J. Chem. Soc., Dalton Trans. 1972, 2563.
 ²³⁾ E. Keller und H. Vahrenkamp, Chem. Ber. 110, 430 (1977).
- 24) E. Röttinger und H. Vahrenkamp, Angew. Chem. 90, 294 (1978); Angew. Chem., Int. Ed. Engl. 17, 273 (1978).
- ²⁵⁾ L. Y. Y. Chan und F. W. B. Einstein, J. Chem. Soc., Dalton Trans. 1973, 111.
 ²⁶⁾ F. W. B. Einstein und A. C. MacGregor, J. Chem. Soc., Dalton Trans. 1974, 783.
- ²⁷⁾ H. Vahrenkamp, Chem. Ber. 105, 1486 (1972).
- ²⁸⁾ P. T. Greene und R. F. Bryan, J. Chem. Soc. A 1971, 1559.
- ²⁹⁾ H. Vahrenkamp, Chem. Ber. 104, 449 (1971).
- ³⁰⁾ Von dem zu 16 analogen Rheniumkomplex, über den in anderem Zusammenhang berichtet werden soll, konnte ein MS erhalten werden, das die Molekülzusammensetzung bestätigt.
- ³¹⁾ Vgl. H. Beurich und H. Vahrenkamp, J. Chem. Res. 1977, S 98, M 1069.

[92/79]